【简述题】
某工厂收到供货方发来的一批电子元件的例子中,共抽取了10件电子元件进行检验,使用样本的方差为S2=8000.56(小时)。试在95%的置信概率下对该批电子元件使用寿命的方差和标准差进行区别。
详见解析
正确答案:电子元件的使用寿命可看作服从正态分布,则(n-1)S2/σ2服从自由度为(n-1)=9的χ2分布。在95%的置信概率下,查χ2分布表,得(1-α/2)和α/2的分位数分别为χ(1-α/2)2=χ0.9752=2.70和χα/22=χ0.0252=19.02,将S2=8000.56和这两个分位数值代入上述正态总体方差置信区间的公式:[(n-1)×S2]/χα/22<σ2<[(n-1)×S2]/χ(1-α/2)2可得该批电子元件使用寿命的方差的置信区间为:[(10-1)×8000.56]/19.2<σ2<[(10-1)×8000.56]/2.73750.2625<σ2<26668.5,两边开平方,得出该批电子元件使用寿命的标准差的置信区间为:61.53<σ<163.教材章节/页面:5-125
今天给大家整理的问题是【某工厂收到供货方发来的一批电子元件的例子中,共抽取了10件电子元件进行检验,使用样本的方差为】,不知道你答对了没有?那么接下来就让我们一起了解一下该题目的正确答案吧!